
1

PostgreSQL @ TOMTOM – lessons learned

pgconf.eu 2016

About us

2

 We are from Łódź, Poland!

Michał Gutkowski

michal.gutkowski@tomtom.com

Software engineer

solving problems with Java, SQL, Python, Bash

Rafał Hawrylak

rafal.hawrylak@tomtom.com

Software hacker and database expert

mailto:Rafal.hawrylak@tomtom.com

TomTom – What do we do?

3

TomTom - What do we do?

4

 Database with spatial features

 Massive automated tools

 2000+ of manual editors

 Billions of map objects

Map Making Platform

5

 Database Machines – 200+ machines (40 cores, 256GB RAM, RAID 10 ssd drives)

 Queries count – over 600k per second

 Inserted rows count 15k per second

 Storage – 30TB

 Daily db size increase – 200GB

 Reads : Writes ~ 100 : 1

PostgreSQL + PostGIS

6

 Out-off-the-box extension for geometry types

 Processing and analytic functions

 Spatial predicates: intersects, covers, covered by, inside

 Spatial GIST index on geometry (based on bounding

boxes)

 Hint: spatial queries faster on simplified geometry

Query optimization: it is all about indexes

 Run analyze to update pg_statistics

 “ALTER TABLE SET STATISTICS to 1000” for large tables

 Benchmark queries on production data using “explain analyze”

 Changing parameters may completely change query plan

 Indexes are not for free - increases disk size and row insert time

 Multicolumn Indexes - order of columns in B-tree index definition does matter for query performance

check out:

https://explain.depesz.com

http://use-the-index-luke.com/

https://explain.depesz.com/
http://use-the-index-luke.com/
http://use-the-index-luke.com/
http://use-the-index-luke.com/
http://use-the-index-luke.com/
http://use-the-index-luke.com/
http://use-the-index-luke.com/
http://use-the-index-luke.com/

Query optimization: index bloat

 Check bloat on indexes: updates, inserts, deletes causes increased latency of query execution time and increases size of indexes

 Remove not used indexes (pg_stat_all_indexes view shows usage)

 Requires “reindex” (locks entire table for writes) or re-creating an index

Replication: streaming replication

9

 Streaming vs logical

 Replication tree – failover

 Application is prechecking if data is available on standby

 Standby in physical replication is read-only

 Initial copy: rsync vs pg_basebackup.

primary

failover standby

Check out:

https://wiki.postgresql.org/wiki/Streaming_Replication

https://wiki.postgresql.org/wiki/Streaming_Replication

Replication: replication lag

10

 High CPU/IO load

 Check with query: "SELECT now() - pg_last_xact_replay_timestamp()” or in pg_stat_replication view

 Graphite feed from nagios plugin

 Separate volumes for data, xlog, logs, pg_stats

 Use WALs compression for slow network – since 9.5 (increased CPU usage both on master and standby)

 Configuration tuning:

wal_keep_segments = 330000 # 5TB of WALs

max_wal_senders = 10

Replication: replication vs checkpoints

11

 Checkpoint configuration tuning:

checkpoint_completion_target = 0.9

checkpoint_timeout = 1h

checkpoint_warning = 30s

max_wal_size = 100GB

min_wal_size = 1GB

bgwriter_delay = 50ms

bgwriter_lru_maxpages = 2000

Database High Availability

12

What we learned you cannot do in live production system:

 Vacuum full -> well tuned autovacuum instead (more WALs)

 Create index -> Create index concurrently (takes longer)

 Reindex -> Create copy of index and switch with original (needs extra disk space)

DDL under control

13

 Versioning and tracking database layout with Liquibase

 Changes tested on pre-production environments – it lowers risk of human error and inconsistencies

 Rollback logic

Query optimization - monitoring

14

 Use statistics collector

pg_stat_activity, pg_stats_statements

 Configuration in postgresql.conf

log_min_duration_statement = 20000

shared_preload_libraries = 'pg_stat_statements,auto_explain'

auto_explain.log_min_duration = 20000

auto_explain.log_analyze = true; <--- can be expensive to run query twice

Monitoring: pg_stat_statements

15

 gathers a bunch of useful statistics of query execution

 the best way to track lots of short queries

 one cumulative sack

 not usable if you need track query behavior changes

collect from

observed db

store in

collector

reset on

observed db

export to

logstash

data available

in Kibana

repeat every hour

ElastAlert https://github.com/Yelp/elastalert

https://github.com/Yelp/elastalert

Monitoring: stat_statements in Kibana

16

In Kibana, we can easily observe for each particular statement on each and every machine separately (if we want to):

 total execution time

 cpu execution time

 io execution time

 number of calls

 number of rows returned / affected

 average execution time

 average cpu execution time

 average io execution time

 average number of calls

 average number of rows returned / affected

In terms of:

- historical data

- trends

- behaviour changes

- the heaviest query

- distribution

Monitoring: stat_statements in Kibana

17

Monitoring: other tools we use

18

 Munin

 System/postgresql statistics

 AWS CloudWatch

 AppDynamics for performance

 Unix tools: htop / iotop

 pg_view

https://github.com/zalando/pg_view

Questions?

19

We are hiring!

